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Abstract Remote sensing of precipitation is critical for regional, continental, and global water and
climate research. This study develops a deep learning mechanism to link between point‐wise rain gauge
measurements, ground‐based, and spaceborne radar reflectivity observations. Two neural network models
are designed to construct a hybrid rainfall system, where the ground radar is used to bridge the scale gaps
between rain gauge and satellite. The first model is trained for ground radar using rain gauge data as target
labels, whereas the second model is for spaceborne Tropical Rainfall Measuring Mission (TRMM)
Precipitation Radar (PR) using ground radar estimates as training labels. Data from 1 year of observations in
Florida during 2009 are utilized to illustrate the application of this hybrid rainfall system. Validation
using independent data in 2009, as well as 2‐year comparison against the standard PR products,
demonstrates the promising performance and generality of this innovative rainfall algorithm.

Plain Language Summary The Tropical Rainfall Measuring Mission (TRMM) Precipitation
Radar (PR) was the first spaceborne active sensor for observing precipitation over the tropics and
subtropics. During its 17 years (1997–2014) in orbit and beyond, PR has been an important tool to
characterize tropical precipitation microphysics and quantify rainfall rate over the globe. Ground validation
is a critical component in the development of TRMM products. However, the ground‐based sensors have
different characteristics from PR in terms of resolution, viewing angle, and uncertainties in the sensing
environments, which are not taken into account in the operational parametric rainfall relations applied to
PR measurements. This study develops a nonparametric machine learning technique for PR rainfall
estimation. In the regions where substantial gauge and ground radar data are available, this approach can
produce better rainfall estimates compared to the standard PR algorithm. In areas such as ocean and remote
regions where no gauge or radar available, the proposed rainfall algorithm is easy to implement, and it
can still produce reasonable estimates. With more and more gauges and radars being deployed and many of
them become operational, this algorithm can be trained at different locations represented by different
atmosphere properties to further improve the performance and generality.

1. Introduction

Spaceborne and ground‐based radars are efficient tools for observing precipitation and its 3‐Dmicrophysical
structure. In principle, the functional relation between rain rate on the ground and the four‐dimensional
radar observations aloft can be obtained from measurements. However, it is difficult to express this
functional relation in a simple form due to the complex space time variability in precipitation microphysics
(Cifelli et al., 2018; Gou et al., 2018). The performance of radar‐derived quantitative precipitation estimation
greatly relies on the physical model of the raindrop size distribution (DSD) and the relation between the
physical model and radar parameters (Bringi & Chandrasekar, 2001; Dolan et al., 2018; Wen et al., 2018).
Conventional parametric relationships between radar reflectivity Z and rain rate R (so‐called Z − R
relations) are not sufficient to capture such variabilities (Chen et al., 2017; Kirstetter et al., 2015; Kitchen
et al., 1994; Steiner & Smith, 2000).

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in 1997 to observe moderate to
heavy rainfall over the tropical and subtropical regions (Kummerow et al., 1998). Since then, the TRMM
satellite has collected substantial measurements through the world's first spaceborne Precipitation Radar
(PR) to improve our understanding of the distribution of precipitation. The TRMM PR (Kozu et al., 2001)
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is a unique instrument capable of resolving high‐resolution vertical profiles of precipitation on local‐to‐
global scale. However, fundamental challenges exist in performing PR algorithm development and product
validation with ground observations. Spatially, the horizontal resolution of PR is about 4.5 km, much coarser
compared to the point‐wise surface weather stations. Temporally, available data pairs for comparison
between PR and rain gauge measurements are scarce during a single precipitation event due to TRMM's lim-
ited coincident overpasses. It is impractical to deploy dense gauge networks over a very broad range in order
to capture TRMM satellite footprints. In contrast to rain gauges, ground radars measure rainfall over large
spatial extent from which one can obtain a large amount of coincident samples with PR. At the same time,
ground radar can collect simultaneous observations with rain gauge networks in the temporal dimension.

Prior research has shown that neural networks can be used to estimate surface rainfall from ground radar
measurements (Liu et al., 2001; Orlandini &Morlini, 2000; Xiao & Chandrasekar, 1997). This nonparametric
approach can explore the complex functional relation from high dimension input space (i.e., radar data) to
the target space (i.e., rain gauge measurements). However, the utilization of neural networks in rainfall esti-
mation is subject to many factors such as the representativeness and sufficiency of the training data set and
the generalization capability of the trained model to new data containing subseasonal‐to‐seasonal changes
in precipitation (Teschl et al., 2007; Xu & Chandrasekar, 2005). This study builds an adaptive deep neural
network system for TRMM PR rainfall estimation using rain gauge data as ground truth. Therein, we use
ground radar to bridge the scale gaps between PR and rain gauges. This research is also motivated by the
rapid development of deep learning techniques, which have been successfully implemented in many appli-
cations (LeCun et al., 2015).

In particular, two multi‐layer perceptron (MLP) models are designed to form the hybrid rainfall system
(Figure 1). First, a ground radar‐based model (MLP‐1) is trained using rain gauge measurements as target
labels. The trainedMLP‐1 model is applied to derive ground radar rainfall estimates that will be used to train
PR observations for space‐based rainfall estimation. For the MLP‐1 model, it is easy to obtain a large number
of training data pairs since ground radar is able to scan over the same location covered by gauge networks in
fine temporal resolution, which is not possible for PR. Then, the alignment approach described in Bolen and
Chandrasekar (2003) is applied to match PR and ground radar observations for subsequent training of the
MLP‐2 model. Overall, the ground radar observations and products serve as a critical relay linking rain
gauge measurements on the ground and PR observations from space.

2. Data Set and Methodology
2.1. Data Set

Ground radar and rain gauge data collected near Melbourne, FL, in the year 2009 are used to demonstrate
the proposed hybrid system. In particular, ground radar reflectivity measurements within 100 km of the
KMLB Weather Surveillance Radar ‐ 1988 Doppler (WSR‐88D) are considered. As shown in Figure 1c, the
Constant Altitude Plan Position Indicator (CAPPI) reflectivity profiles are generated at 1‐, 2‐, 3‐, and 4‐km
heights with 1‐km horizontal resolution. Three rain gauge networks around the KMLB radar are utilized,
including the Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St.
Johns Water Management District (STJ) data sets, which respectively contain 33, 46, and 99 stations. All
the stations are managed and maintained by the National Aeronautics and Space Administration (NASA)
Precipitation Measurement Mission (PMM) ground validation program (Wolff et al., 2005).

TRMM PR data from 542 coincident overpasses over Melbourne region during 2009 are collected, among
which 74 cases have decent precipitation in both PR and KMLB radar observations and are used to train
and test theMLP‐2model. PR data collected in other regions during 2009, as well as the data collected during
2013, are also used to demonstrate and evaluate the applicability of the hybrid rainfall system. In addition,
the standard PR products derived by NASA and Japan Aerospace Exploration Agency (JAXA) are utilized to
further demonstrate the feasibility of the proposed rainfall approach.

2.2. Methodology

Figure 1a illustrates the overall architecture of the hybrid rainfall algorithm. There are four main modules,
namely: (1) the MLP‐1 model linking rain gauges and ground radar, (2) alignment between ground radar
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and PR measurements, (3) the MLP‐2 model linking ground radar and PR, and (4) model and application
product verification. Details of the MLP‐1 and MLP‐2 models are respectively shown in Figures 1c and 1d.
2.2.1. MLP‐1 Model Design for Ground Radar Rainfall Estimation
As shown in Figures 1a and 1c, the MLP‐1 model is constructed to estimate rainfall using ground radar
observations. The system equation can be expressed in a general form as:

y1 ¼ f w1Xþ b1ð Þ
⋮

(1a)

yn ¼ f wnyn−1 þ bnð Þ (1b)

Z ¼ f wnþ1yn þ bnþ1ð Þ (1c)

where X is the input variable consisting of ground radar reflectivity profiles at four vertical levels (i.e., 1‐, 2‐,
3‐, and 4‐km height), y1⋯yn are the outputs of hidden layers from left to right,w1 is the weight vector for the
input profiles, and w2⋯wn+1 are the weights of the n hidden layer outputs, respectively; b1⋯bn+1 are the
bias terms associated with the input and hidden layers; Z is the output (i.e., ground radar rainfall estimates)
that will be compared with the target labels (i.e., gauge measured rainfall).

Figure 1. Two‐stage deep learning system for Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) rainfall estimation: (a) overall system dia-
gram; Block 1 shows the conceptual diagram of the MLP‐1 model designed for ground radar using rain gauge as target labels; Block 2 illustrates the geometry
and alignment between ground‐based and spaceborne radar measurements; Block 3 sketches the MLP‐2 model for PR using ground radar rainfall estimates (from
MLP‐1) as target labels; (b) MLP model optimization for a predefined hyperparameter; (c) details of the MLP‐1 model; (d) details of the MLP‐2 model.
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Similar to many other machine learning problems, it is not easy to predefine the model hyperparameters,
including the number of hidden layers, the number of neurons/nodes for each layer, and the learning rate
(Bergstra et al., 2011; Hinton & Salakhutdinov, 2006). The determination of hyperparameters for robust
and accurate precipitation estimation for a given set of rain gauge, ground radar, and space radar data partly
relies on our experience and experiments. In particular, a grid search approach is applied andmany different
hyperparameter candidates are tested in the training process to discover the one that results in the most
accurate estimates. For each hyperparameter, the MLP model is optimized using the gradient descent algo-
rithm (Burges et al., 2005). Figure 1b details the three‐step optimization procedure, including forward pro-
pagation for estimation and the backward propagation to update the weights: (1) computation of the hidden
layer outputs yi and precipitation estimates Z, (2) calculation of the cost function E of Z using target labels
(gauge observations for MLP‐1), and (3) error backward propagation to update weights wi,j based on the gra-

dient ∂E
∂wi;j

until an optimal solution is reached. Here, the cost function E is defined as the mean square error of

ground radar estimated rainfall RRE with respect to rain gauge measurements RRT:

E ¼ 1
N
∑ RRE−RRTð Þ2 (2a)

wi;j newð Þ ¼ wi;j oldð Þ−ρ
∂E

∂wi;j oldð Þ
(2b)

where N is the total number of sample pairs, ρ is the learning rate of the MLP model, and wi,j is the weight
associated with the jth node of the ith layer. It should be noted that the scale mismatch between gauge and
ground radar is neglected in this study. That is, the point‐wise gauge data are assumed to represent the 1‐km
by 1‐km “areal” radar grid pixels. Temporally, 5‐min scale is adopted in the MLP‐1 model since the radar
volume scan is updated every ~5 min. The 5‐min rainfall estimates from radar and gauges are aggregated
to hourly scale in the quantitative evaluation analysis.

In this study, themodel is trained adaptively with the weights updated on a daily basis in order to capture the
variations and avoid the propagation of uncertainties in larger temporal (e.g., monthly) scales (Liu et al.,
2001; Tan et al., 2017). That is, the model is revised every day so as to include the newly available rain gauge
and corresponding radar measurements. In total, 390,960 gauge 5‐min rainfall samples and corresponding
radar reflectivity profiles are utilized to train and test the MLP‐1 model. The sample pairs are randomly split
into training (80%) and testing (20%) subsets.
2.2.2. Alignment of TRMM‐PR and Ground Radar Observations
The novelty of this deep learning system lies in the development of a link between rain gauges, ground, and
space radars that sample precipitation from completely different geometrical aspects. Block 2 in Figure 1a
shows the sampling differences between space and ground radar, where PR has a horizontal resolution of
~4.5 km but fine vertical resolution while ground radar has finer radial resolution (i.e., horizontal range)
but varying vertical resolution depending on the distance from the radar. These two data sets need to be
aligned in order to proceed with the MLP‐2 model and subsequently derive rainfall products using PR mea-
surements. To this end, the alignment approach developed by Bolen and Chandrasekar (2003) is used, which
takes into account the differences in viewing angles, propagation paths, frequencies, resolution volume size,
and time synchronization mismatch between space‐ and ground‐based observations, as well as the geo-
metric distortions caused by the movements and attitude perturbations of the spacecraft (see also
Schwaller & Morris, 2011). In this process, both the ground‐based and spaceborne radar data are resampled
to a common grid so that direct comparison can be made between the two systems.
2.2.3. MLP‐2 Model Design for TRMM PR Rainfall Estimation
Block 3 in Figure 1a sketches the MLP‐2 model designed for PR. The manipulation process of the MLP‐2
model is similar to MLP‐1 in terms of the neural network structure and model optimization. Instead, the
MLP‐2 model takes the vertical profiles of PR reflectivity between 1 and 4 km as inputs. The corresponding
target labels are rainfall estimates derived from the aligned ground radar observations using the trained
MLP‐1 model. In addition, the cost function E is defined as the mean square error of PR estimated rainfall
rates with respect to ground radar rainfall rates.

It should be noted that the MLP‐1 model is trained for all available precipitation events, whereas the MLP‐2
model is trained only using coincident satellite overpasses and is updated only when a precipitating overpass
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occurs. During the selected 74 overpass cases, there are 118,400 ground radar and PR sample pairs, among
which 80% of the data are using for training and 20% are using for test.
2.2.4. Model and Product Validation
In order to demonstrate and evaluate this innovative approach for regional and global rainfall mapping, this
letter compares the rain rate estimates from both MLP‐1 and MLP‐2 models with independent validation
data set for the year 2009. In particular, for verification of the MLP‐1 model, the testing data (20% of total
sample pairs) of ground radar and gauges are used. For verification of the MLP‐2 model, rainfall estimates
derived from PR testing data (20% of total overpass samples) are compared with corresponding ground radar
estimates. In addition, PR data collected for the whole year of 2013 are used to derive rainfall products to
further verify the trained MLP‐2 model. Regional and global rainfall maps at monthly and yearly scales
are generated for PR using the trained MLP‐2 model, and the rainfall maps are compared to the standard
PR products from TRMM program to demonstrate the generic applicability of this novel rainfall system.

The following scoring metrics, including normalized mean difference (NMD), normalized mean absolute
difference (NMAD), and Pearson correlation coefficient (CORR), are computed for quantitative assessment
of the two MLP models as well as the derived PR product:

NMD ¼ REst−RRefh i
RRefh i (3a)

NMAD ¼ REst−RRefj jh i
RRefh i (3b)

CORR ¼ ∑ REst− REsth ið Þ RRef− RRefh ið Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ REst− REsth ið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ RRef− RRefh ið Þ2

q (3c)

Figure 2. (a–c) Sample rainfall rate estimates from ground‐based KMLB radar and spaceborne Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar
(PR) on 20 May 2009, at 0337UTC (satellite orbit #65574): (a) ground radar estimates using the MLP‐1 model; (b) space radar estimates using the MLP‐2
model; (c) standard TRMM PR product. (d and e) Model performance assessment using independent validation data in 2009: (d) ground radar rainfall estimates
versus rain gauge measurements at hourly scale; (e) TRMM PR rainfall estimates versus ground radar product.
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where REst represents the estimated rainfall from the MLP‐1 or MLP‐2 model; RRef represents the reference
rainfall from independent validation gauge or ground radar estimates or the standard TRMM PR products.

3. Results and Discussion
3.1. Quantification of Model Uncertainty

Figures 2a–2c illustrate a rainfall instance estimated by the ground‐based KMLB radar and spaceborne PR
during the satellite overpass at 0337UTC on 20 May 2009. In particular, the KMLB radar product in
Figure 2a is derived using the MLP‐1 model, whereas the PR estimates in Figure 2b are obtained from the
MLP‐2 model. The standard instantaneous rain rate product from TRMM program (Iguchi et al., 2000) cor-
responding to this time frame is shown in Figure 2c, for cross comparison. Overall, the three products exhibit
similar pattern with a line of convection observed off the east coast of Florida and a region of more stratiform
type rainfall over the peninsula. Scrutinizing Figures 2a–2c, it is also found that the PR precipitation esti-
mates from the MLP‐2 model is smoother and more realistic compared to the standard TRMM product,

Figure 3. Sample monthly and yearly rainfall product for the region near Melbourne, FL, in 2009. Monthly rainfall map (May) derived using (a) the hybrid neural
network system and (b) the standard Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR)product (i.e., 3A26); yearly rainfall derived using
(d) the hybrid neural network system and (e) the standard TRMM PR product; (c) and (f) are the scatter plots of zonal means of rainfall estimates in (a) and (b) and
(d) and (e), respectively.
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which is more scattered. In addition, the precipitation intensity estimated using the MLP‐2 model agrees
with the ground radar estimates better than the standard product does.

In order to further demonstrate the performance of the neural network models, we utilize the independent
testing data to quantify the associated model uncertainties. Figures 2d and 2e, respectively, show the scatter
plots of rainfall estimates from the MLP‐1 and MLP‐2 models versus the independent validation data sets. In
Figure 2d, 6,516 data pairs (ground radar vs gauge) are included, while Figure 2e includes 586 sample pairs
(PR vs ground radar). Obviously, both models exhibit good performance with low NMD and high CORR.
The ground radar estimates from theMLP‐1model are highly correlated (0.95) with independent gaugemea-
surements with a normalized bias of 1.4%. The correlation and normalized bias between PR estimates and
independent ground radar products are 0.94 and 5.6%, respectively. Compared to previous studies, which
use ground‐based radar to validate the standard PR rainfall estimates (e.g., Kirstetter et al., 2012, 2014;
Liao & Meneghini, 2009; Wolff et al., 2005), the scores in Figure 2e show superior performance of the
MLP‐2 model to the current algorithm adopted by the PMM program.

3.2. System Application and Verification

The other advantage of the proposed rainfall algorithm is that it is very flexible and can be easily applied to
TRMM PR data after training. For illustration purpose, monthly rainfall maps are generated and compared
to the standard PR products (i.e., TRMM 3A25 and 3A26) at both regional and global scales. The 3A25

Figure 4. Global rainfall products for the year 2009: Sample monthly rainfall map (January) derived using (a) the hybrid neural network system and (b) the
standard Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR)product (i.e., 3A26); yearly rainfall derived using (d) the hybrid neural network
system and (e) the standard TRMMPR product; (c) and (f) are the zonalmeans and standard deviations (std) of rainfall products illustrated in (a) and (b) and (d) and
(e), respectively.
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product is produced on 0.5° × 0.5° latitude/longitude grid, whereas the 3A26 product is on 5° × 5° scale. Both
are monthly products derived from PR 2A25 data. More details about how the 3A25 and 3A26 monthly
rainfall maps are generated can be found from https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_L3/.
For the high‐resolution PR estimates from the MLP‐2 model, at a certain pixel, the rainfall accumulation
during a month is calculated by multiplying the mean rainfall rate within that pixel by the total number
of hours in that month, and multiple grids are averaged in order to match the coarse resolution of
standard TRMM product.

For regional analysis, a 10° × 10° area over the KMLB Florida region is considered. Figure 3 shows sample
rainfall accumulation maps at 0.5° × 0.5° resolution for January and the whole year of 2009, including the
scatter plots of corresponding zonal means of rainfall accumulation generated by the new approach versus
the standard TRMM product. Results for other months are supplemented in Figure S1 in the supporting
information. Although differences in the numerical values still exist, Figure 3 indicates that, on average,
the rainfall maps generated by the MLP estimator are very similar to those derived from the standard
TRMM product, demonstrating the feasibility of the proposed rainfall approach.

In order to explore the representativeness of this hybrid rainfall system, global monthly rainfall maps are
also generated using the trained MLP‐2 model. The global product is created pixel by pixel on 5° × 5°
latitude/longitude grid to match the 3A26 product. Figure 4 shows example global rainfall products for
January and the whole year of 2009, including both the standard 3A26 product and new product derived
from the hybrid model, as well as the zonal means and standard deviations of these two products. Again,
it can be seen that the products generated by the neural network estimator are very similar to the standard
TRMM products at a global scale, which is further demonstrated by the scatter density plots in Figure S2.
However, it is noted that the zonal means of the deep learning‐based products are slightly higher at higher
latitude than near the equator (20°N–20°S). This is likely because the regional model developed using
Florida data can represent the precipitation features at lower latitudes better than middle latitudes.

Table 1 shows the numerical comparison results between the proposed hybrid model and standard PR pro-
duct at both regional and global scales. It is concluded that the two products agree with each other fairly
well, despite the PR product indicates slightly less precipitation with respect to the neural network product
at both scales. The overall scores for 12 monthly rainfall combined have low NMD of 14.7% (5.9%) and high
CORR of 0.89 (0.97) at regional (global) scale. In addition, the trained model using 2009 data is implemented
for PR data collected during 2013 in order to further demonstrate its generic applicability. Results are
supplemented in Table S1 and Figures S3–S6 in the supporting information, which essentially show similar
performance to 2009.

Table 1
Cross Comparison Results Between Rainfall Estimates From the Proposed Hybrid Neural Network Approach and the
Standard TRMM PR Products during 2009

Year 2009

Regional product Global product

NMD (%) NMAD (%) CORR NMD (%) NMAD (%) CORR

January 13.8 39.6 0.88 4.4 13.8 0.98
February 19.3 43.6 0.87 3.4 14.7 0.97
March 18.3 40.9 0.88 5.1 14.4 0.98
April 17.0 39.4 0.88 5.7 15.1 0.97
May 13.3 32.5 0.91 5.5 14.4 0.97
June 15.8 44.9 0.84 7.7 17.4 0.96
July 9.6 32.8 0.89 5.4 14.3 0.98
August 10.7 31.9 0.91 6.1 15.0 0.98
September 12.6 33.7 0.90 7.2 16.0 0.97
October 15.9 38.5 0.89 7.2 16.1 0.97
November 18.8 38.7 0.89 6.9 16.2 0.97
December 17.2 36.3 0.87 5.3 15.4 0.97
Monthly All 14.7 36.5 0.89 5.9 15.3 0.97
Yearly Total 12.7 20.3 0.93 5.8 10.8 0.98

Abbreviations: CORR, Pearson correlation coefficient; NMAD, normalized mean absolute difference; NMD, normal-
ized mean difference; PR, Precipitation Radar; TRMM, Tropical Rainfall Measuring Mission.
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3.3. Discussion

The closeness and behavior of rainfall indicated by the plots demonstrate that there is a good potential this
nonparametric technique can be applied to spaceborne radar. The nonparametric scheme allows for adap-
tive relationships between PR reflectivity and rainfall compared to conventional “fixed” relations that
may not adequately represent precipitation variability. Although exhaustive evaluation of such benefit in
other regions characterized by different precipitation microphysics is still required, demonstration study
in Florida shows that this machine learning approach could produce better estimates compared to the stan-
dard TRMM algorithm in regions where substantial gauge and radar data are available. It is also noteworthy
that this hybrid system is very easy to implement. It can produce comparative estimates with the standard
TRMM product if applied to other regions without changing the model, which is very appealing especially
in the areas such as ocean and remote regions where no gauge or radar available. With more and more
gauges and ground radars being deployed in the world and many of them become operational, this hybrid
system can be trained at different locations with different atmosphere properties to further increase the
dynamic adjustment and generality.

4. Summary

A nonparametric deep learning approach to rainfall estimation using TRMM PRmeasurements is described.
Essentially, a two‐stage deep neural network system was designed. The first was to map the relation between
ground radar reflectivity and rainfall intensities from gauges. The second was to train spaceborne radar pro-
files using ground radar rainfall estimates. Data from 1 year of observations during 2009 in Florida were used
to show the implementation of this innovative system. Validation using independent data in 2009 as well as
2‐year comparison against the standard TRMM product demonstrated its promising performance. Although
extensive application and evaluation for different precipitation types in different climate regions need to be
conducted in future, this deep learning technique already showed the great potential for regional and global
rainfall mapping.

In the GPM era, such machine learning‐based approach should be considered in support of rainfall algo-
rithm development for the dual‐frequency precipitation radar, where the dual‐frequency measurements
should be suited to the MLP framework in order to better account for the precipitation microphysical varia-
bility. The approach proposed in this study will also provide insights into radar‐radiometer combined preci-
pitation estimates, which can serve as calibrator for the Integrated Multi‐satellitE Retrievals for GPM
(IMERG). In addition, this nonparametric system can be expanded as a data fusion platform through incor-
porating additional input features such as numerical weather prediction model results.
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